'Together we unlock potential and learn for life'

Moor First School - Progression in Maths

Orange 14\% beginning 29\% beginning +	Orange 43\% developing 57\% developing +	Orange $/ 74$ 71\% Secure 86% secure +	Orange 26\% greater depth 1 56\% greater depth 2 85\% greater depth 3
Number, Place Value and Rounding			
1. Count in 2's, 5's and 10's from 0 and use this to solve problems.	28. I can count forward in steps of 10 from any number up to 100 (e.g. 34, 44, 54, 64 ...).	50. I can count in 3's. 51. I can count backward in steps of 10 from any given number.	75. Recognise and identify a multiple of 2,5 and 10 of any given number.
2. I am confident recording my thinking or working out on a number line.	29. I can identify, represent and estimate numbers using a number line.	52. I can identify, represent and estimate numbers using the expanded column method.	76. Recognise and understand the place value of each digit in a threedigit number (hundreds, tens, and ones).
3. Read and write numbers in numerals up to 100.	30. I am confident in knowing the value of each digit in a 2-digit number.	53. I can read and write numbers to at least 100 (numerals and words).	77. Accurately estimate numbers on an empty line and explain why they have placed my number in that position.
4. Compare numbers from 0 up to 100 using the greater than > and the less than < signs.	31. Compare and order numbers from 0 up to 100 using the greater than > and less than < and = signs.	54. I can use my knowledge of place value and number facts to solve problems.	78. Solve problems using <, > and = signs numbers up to 100 and explain
5. I understand what tens and ones are and can use structured resources to begin to partition.		55. I can partition any 2 digit number into different combinations of tens and ones, explaining their thinking verbally, in pictures or using apparatus.	my reasoning. 79. Read numbers correctly in words when solving a mathematical problem. 80. Explain the method I have used and how the problem was solved and why the answer is correct.

6. Recall at least four of the six number bonds for 10 and reason about the associated facts (eg $6+4=10$, therefore $4+6=10$ and 106=4)
7. I can solve addition and subtraction problems (with numbers up to and beyond 20).
8. I can add 1 digit to a 2 digit number by putting the biggest number in my head and counting on or using objects.
9. I can add multiples of 10 to a 2digit number (e.g. 34+20=54) in my head.
10. I understand that numbers can be added in any order.
11. Recognise the inverse relationship between addition and subtraction (e.g. $6+4=10$ so $10-4=6$).
12. I can recall and use number facts up to 100 (e.g. 70+30=100 and also $75+25=100$).
13. I can solve addition and subtraction problems involving numbers, quantities and measures up to 100 .
14. I can add three 1-digit numbers in my head (e.g. $8+6+4=18$) or use objects.
15. I can add and subtract two digit and ones, and two digit numbers and tens where no regrouping is required, explaining their method verbally, in picture or using apparatus (eg $23+5,46+20,16-5$, $88-30)$.
16. I am beginning to add two 2-digit numbers in my head or use the expanded column method (e.g. $23+21$ in my head but $28+26$ using the expanded column method).
17. I understand that when subtracting, the biggest number must go first.
18. I can demonstrate my understanding that addition of 2 numbers can be done in any order and subtraction of 1 number from another cannot.
60.Recall all number bonds to and within 10 and use these to reason with and calculate bonds to 20, recognising other associated additive relationships (eg if $7+3=$ 10 then $17+3=20$, if $7-3=4$, then $17-3=14$; leading to if $14+3=17$ then $3+14=17,17-14=3$ and 17 $3=14$)
19. Solve unfamiliar word problems that involve more than one step (eg which has the most biscuits, 4 packet of biscuits with 5 in each packer or 3 packets of biscuits with 10in each packet?)
20. Use fluent recall of subtraction and addition facts to support mental calculations.
21. Use a written method to add and subtract two 2 digit numbers from 2 digit numbers.
'Together we unlock potential and learn for life'

Multiplication and Division

12. I recognise odd and even numbers.
13. I can recall the multiplication facts for the 2,5 and 10 times tables.
14. Solve simple multiplication and division sums using apparatus and arrays (e.g. multi-link).
15. I understand that numbers can be multiplied in any order.
16. I am beginning to recall some related division facts (e.g. $6 \times 2=12$ so $12 \div 2=6$).
17. Solve multiplication and division sums in my head or using a number line.
18. I understand that when dividing, the biggest number must go first.
19. I can recall and use the multiplication and division facts for the 2,5 and 10 times tables and use them to solve simple problems, demonstrating an understanding of commutativity as necessary.
20. Use commutativity and inverse relations to develop multiplicative reasoning (e.g. $4 \times 5=20$ and $20 \div 5=$ 4).
21. Recognise and use the inverse relationships between multiplication and division.
22. Show and explain how knowing a multiplication fact helps me to solve a division word problem and record related number sentences.
23. Recall and use multiplication and division facts for 2,5 and 10 and make deductions outside known multiplication facts.

Fractions, Decimals and Percentages
16. I am beginning to find, name and write $1 / 3,1 / 4,2 / 4(1 / 2)$ and $3 / 4$ of a length, shape, set of objects or quantity.

62. Identify $1 / 4,1 / 3,1 / 2,2 / 4,3 / 4$ of a number or shape, and know that all parts must be equal parts of the

 whole.63. I can use my knowledge of equivalent fractions.
64. Solve and explain how to use fractions when solving problems using shape, objects and quantities.
65. Count in halves and quarters up to 10 on a number line and begin to understand the concept of fractions as numbers.

Measurement			
17. I can carefully measure length, height (m / cm), mass (kg, g), temperature (${ }^{\circ} \mathrm{C}$) and capacity (I / ml)	42. I can estimate length, height $(\mathrm{m} / \mathrm{cm})$, mass (kg, g), temperature $\left({ }^{\circ} \mathrm{C}\right)$ and capacity (I / ml) using standard units.	64. I can choose appropriate units to measure in and compare and order measurements.	92. Add and subtract different measures to help me solve and explain a problem.
18. I can read scales in divisions of ones, twos, fives and tens.	43. I can combine amounts of money	65. I can record measurements using the $<,>$ and $=$ signs.	93. I can read scales in $1^{\prime \prime}$ s, 2's, 5's and 10's in practical situations when not all the numbers are on the scale and estimate points in between.
19. I can recognise and use the $£$ and p symbols.	to make a given value.	66. I can use different coins to make the same amount.	
20. Know the value of different coins		67. I can solve simple problems involving money and give the correct	involving addition and subtraction of money of the same unit, including giving change.
21. I am beginning to solve simple problems practically involving the addition and subtraction of money.	44. I can tell and write the time to the nearest 15 minutes including quarter past and quarter to the	change.	
22. There are 60 minutes in an hour and 24 hours in a day.	hour. 45. I can compare and sequence	68. I can draw the hands on a clock face to show these times.	95. Solve and explain simple problems involving time using a number line.
	intervals of time.	15	96. I can read the time on a clock to the nearest 5 minutes.

Geometry: Properties of Shapes.			
23. I can compare and sort common 2D and 3D shapes and everyday objects. 24. Name some common 2D and 3D shapes from a group of pictures of the shapes and describe some of their properties (eg triangles, rectangles, squares, circles, cuboids, cubes, pyramids and spheres).	46. I can identify and describe the properties of 2D shapes including the number of sides, vertices and lines of symmetry. 47. I can identify 2D shapes on the surface of 3D shapes.	69. I can identify and describe the properties of 3D shapes including the number of edges, vertices, faces and lines of symmetry. 70. I can identify and describe a vertical line of symmetry.	97. Describe similarities and differences of 2D and 3D shapes, using their properties (eg, that two different 2D shapes both have only one line of symmetry, that a cube and cuboid have the same number of edges, faces and vertices, but different dimensions.
Geometry: Position, Direction, Motion			
25. I can recognise, continue and make my own patterns. 26. I can use the correct mathematical words to describe position, direction and movement.	48. I can recognise right angles as quarter turns.	71. I can recognise, continue and make my own sequences of numbers. 72. I can make quarter, half and three quarter turns clockwise and anticlockwise.	98. Work with patterns of shapes and predict what will come next. 99. Understand the concept and language of angles (right angles) to describe 'turn' by applying rotations, including in practical contexts.
Statistics			
27. Ask and answer simple questions by counting the number of objects in each category and sorting categories by quantities.	49. I can make my own simple pictograms, tally charts, block diagrams and simple tables.	73. I can interpret simple pictograms, tally charts, block diagrams and simple tables. 74. I can ask and answer questions about totalling and compare data.	100. Recognise simple pictograms, tally charts, block diagrams and tables. 101. Be able to ask more complex questions about simple pictograms, tally charts, block diagrams and tables.

${ }^{\text {'Together we unlock potential and learn for life' }}$
\square

